

CHANGE YOUR UNIVERSE Soil-Cement for Building Foundations

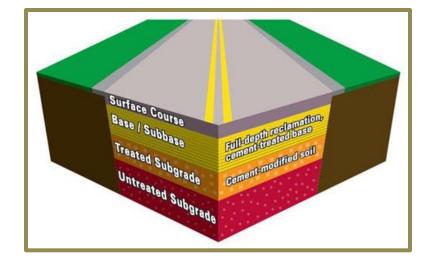
Doug Hula, P.E. Gosling Czubak Engineering Sciences, Inc.

Presentation Outline

- Introduction
- Overview
- Case Study
- Inspection & Testing
- Advantages
- Applications
- Closing/Questions

What is Soil-Cement?

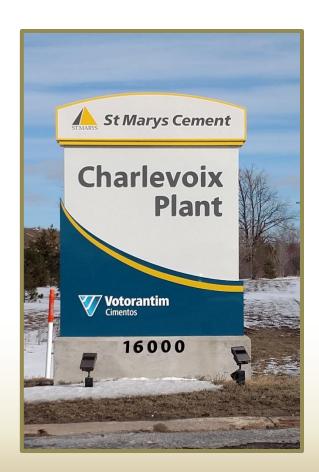
- Highly-compacted mixture of soil, cement and water
- Distributes load over broad areas
- Sometimes called "cement-stabilized soil"



Where is Soil-Cement Used?

- Method of subgrade
 improvement
- Successfully used for roadbuilding in Michigan

 Rarely (if ever) used for structure foundations in Michigan



• St. Marys Cement

○ Charlevoix Upgrade Project

- Long-term professional relationship
 - Geotechnical engineering and materials testing since 1970's
 - Environmental services
 - o Surveying

Fisherman's Island State Park

-SiMin/Geneti

Boulger Park

Case Study

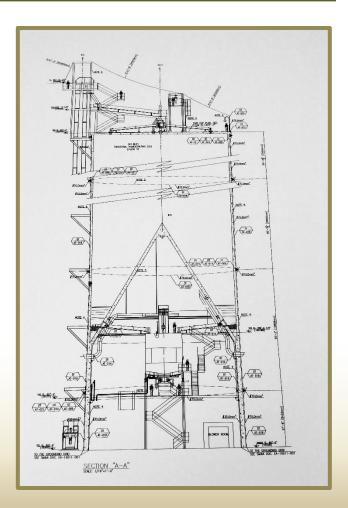
Industrial Plant Upgrade

- Required large foundation bearing capacity beneath multiple large structures
 - Blend Silo
 - Coal Mill Building
 - Raw Mill Cyclone
 - Finish Mill Building
 - A variety of other smaller structures

Existing Site Conditions

- \circ Extensive geotechnical exploration
- \odot Highly variable depth to bedrock
- Variety of old fill gravel, sand, silt & clay + cobbles & boulders

Piles considered for foundation


Soil-cement as alternative

o "Change the Universe"

Case Study

- Soil-cement allowed subgrade soil bearing pressure to be increased from 3,000 psf to 8,000 psf
- The first component to be constructed was the blend silo
 - 79 feet in diameter
 - 225 feet tall
 - February in Northern Michigan
 - What could possibly go wrong?

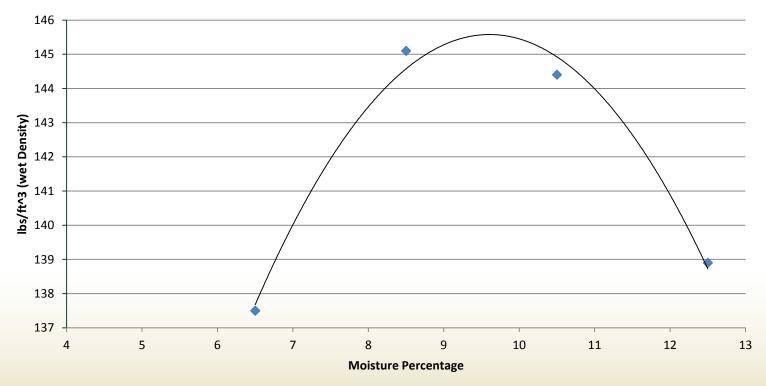
Mix Design and Trial Batching

- Develop mix design to achieve 0.8 MPa (116 psi)
- Samples of material
 - Cement
 - \circ Soil (sand)

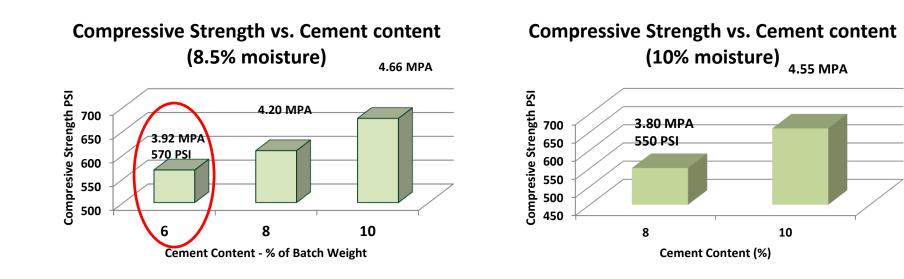
Variables

- Amount of cement
- Moisture content
- Compactive effort

Trial Batching


Mix ID	Specimen	% Moisture	% Cement	Diameter (in)	Height (in)	wt (gm)
1	А	8.5	6	4.000	4.625	2123.0
	В	8.5	6	4.000	4.625	2112.6
2		8.5	8	4.000	4.625	2062.0
Z	A					
	В	8.5	8	4.000	4.625	2091.0
3	А	8.5	10	4.000	4.625	2101.0
	В	8.5	10	4.000	4.625	2081.5
4	А	10	8	4.000	4.625	2159.7
5	А	10	10	4.000	4.625	2165.5

Proctor Values at 6% Cement



Trial Batching

Trial Batching

Conclusions

- Every combination of variables in the lab produced results that met and exceeded the minimum required design strength
- o 6% cement content at 8.5% moisture was recommended
 - Most economical mix
 - Adequate strength to ensure successful construction

Methods Considered

- \odot Batch and mix in excavation
- $_{\odot}$ Use of a pug mill
- Batch and mix materials nearby, then place and compact in the excavation
 - Better control
 - Consistent layers
 - Cost-conscious vs. pug mill

Excavator Bucket Method

Slow process;
 not enough
 mixing
 happening

Front End Loader Method

 Now we're making progress!

Placement

- Soil-cement was placed in 12" layers & compacted
 - Density testing and sample collection for compressive strength

Placement

 Insulated blankets protected material from freezing

Average
 overnight
 temperature of
 19° F

The next day, it was as hard as concrete (almost!)

1 MPa = 145 psi

145 psi ≠ 3000 psi

Average actual strength at 7 days was 930 psi Well above minimum strength Low 240 psi (200% of design), High 1425 psi

[We were never really worried]

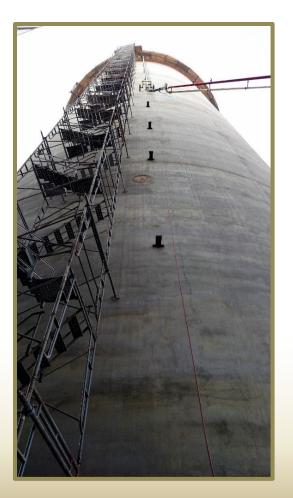
Results

- The entire soilcement foundation was placed in 12 days
 - Excellent working surface for placing forms and reinforcing steel

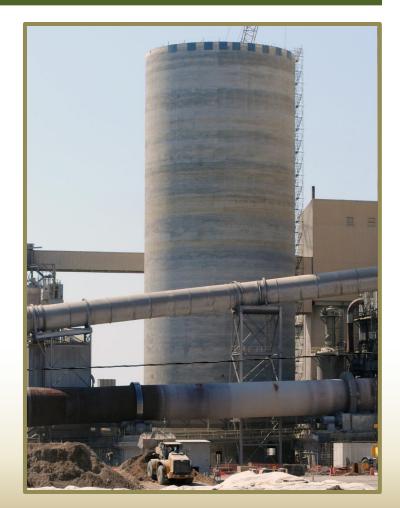
Concrete foundation complete, starting walls

78' 8-7/8" diameter, 224' 0-7/8" high walls
Placed using continuous slipform method

Continuous Slip Form



Continuous Slip Form



Blend Silo

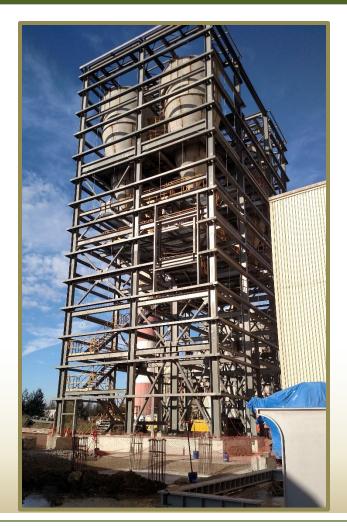
- Soil-cement foundation did not move under the weight of the silo
- Settlement monitoring will continue as the silo is loaded with material

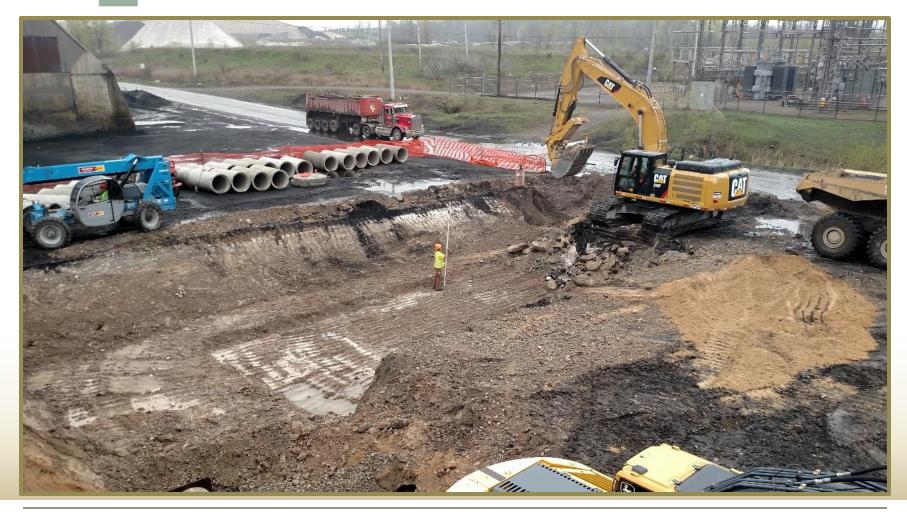
Other Structures

- Raw Mill Cyclone Building- 3,900 sf
- Coal Mill Building 8,700 sf
- Finish Mill Building 16,900 sf
- Clinker Cooler (Partial) 2,500 sf

 \odot All have heavy equipment and dynamic loads

Raw Mill Cyclone Building


Raw Mill Cyclone Building



Raw Mill Cyclone Building

Coal Mill Building

Coal Mill Building

Finish Mill Building

Finish Mill Building

Inspection & Testing

- Monitoring to ensure proper proportions and moisture content
- Adequate mixing
- Layer thickness and compaction
- Compressive strength
- Protection of placed and cured material

- Speed of design and construction
- Frost-proof material eliminates minimum footing depth for frost heave
- Cost savings compared to deep foundation options
 - \circ Piles, caissons, etc.
 - Soil-cement costs range from \$42 to \$110 per cubic yard, depending on volume produced per day

Deep Foundations

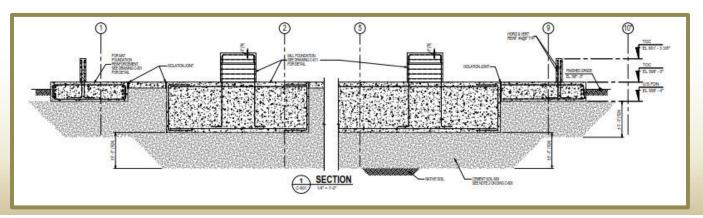
Advantages

Cost savings vs. deep foundation options

- Mobilization \$25,000
- Cost per foot of piles \$26/foot
- Pile load testing \$15,000
- Pile caps and grade beams

Advantages

- Ease of construction at varying bearing levels
- Reliability
- In-place strength tests each layer
 vs. pile load
 tests on selected
 test piles



- Industrial projects
- Commercial projects
- Education and Healthcare projects
- Residential projects

- Transportation projects
- Existing cement plant projects

 \odot Cement component already on site

 Almost any project with inadequate soil properties to support foundation loads

- Fabio Cittadin, Votorantim Cimentos North America (VCNA)
- Cortney Schmidt, St. Marys Cement
- Milton Martins de Matos, Eng Civil, MSc, PhD
- MDC Charlevoix, Michigan
- Rieth-Riley Charlevoix, Michigan

For More Information

Geotechnical

 \odot Soil & Foundation Engineering, Retaining Walls, Slopes

- Construction Observation & Inspection
- Materials Testing
- Laboratory Testing
- Environmental, Surveying and other services

www.goslingczubak.com

Contact Information

Doug Hula, P.E.

Gosling Czubak Engineering Sciences, Inc.

dlhula@goslingczubak.com

231-933-5123 office

616-302-2575 cell

